FAR BEYOND

MAT122

Chain Rule

Review – Composition of Function

Given:
$$f(x) = \sqrt{x}$$
 $g(x) = x^2 + 1$ find $f(g(x))$

Given:
$$h(x) = (x^3 - 1)^{100}$$
 if $h(x) = f(g(x))$ determine $f(x)$ and $g(x)$

Tip: Pick an inner function such that the outer function has a SIMPLE derivative.

Differentiating Composed Functions

must take the derivative of BOTH inner and outer functions

Chain Rule

if h(x) is in the format f(g(x)) then $h'(x) = f'(g(x)) \cdot g'(x)$

$$h'(x) = f'(g(x)) \cdot g'(x)$$

ex:
$$h(x) = \sqrt{x^2 + 1}$$

$$\therefore h'(x) =$$

$$=\frac{x}{\sqrt{x^2+1}}$$

Chain Rule with u-Substitution

ex. differentiate
$$h(x) = (x^3 - 1)^{100}$$

define inner function as
$$u$$
: $u = x^3 - 1$

re-visit:
$$h(x) = \sqrt{x^2 + 1}$$
 $u = x^2 + 1$

$$= 300 x^2 (x^3 - 1)^{99}$$

Chain Rule

$$(outer)$$
' $\cdot (inner)$ '

$$h'(x) = f'(g(x)) \cdot g'(x)$$

$$= \frac{x}{\sqrt{x^2 + 1}}$$

Chain Rule - examples

ex. find
$$\frac{dy}{dx}$$
 of $y = e^{2x}$

$$=$$
 $2e^{2x}$

ex. find y' of
$$y = (1-x)^2 = u^2$$

Chain Rule:

Chain Rule

 $(outer)' \cdot (inner)'$

$$h'(x) = f'(g(x)) \cdot g'(x)$$

Product Rule

$$y' = f'g + fg'$$

Product Rule:

$$=-2(1-x)$$

Practice

Do: find
$$y'$$
 of $y = e^{-x}$

$$=-e^{-x}$$

Do: find y' of
$$y = e^{kx}$$
 where k is a constant

$$=ke^{kx}$$

Chain Rule

$$(outer)' \cdot (inner)'$$

$$h'(x) = f'(g(x)) \cdot g'(x)$$

More Chain Rule Examples

ex. find
$$f'(x)$$
 when $f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$

Chain Rule

 $(outer)' \cdot (inner)'$

$$h'(x) = f'(g(x)) \cdot g'(x)$$

$$= -\frac{2x+1}{3\sqrt[3]{(x^2+x+1)^4}}$$

Chain Rule with Product Rule

ex. find y' of
$$y = (2x+1)^5 x^4$$

$$= 10x^{4}(2x+1)^{4} + 4x^{3}(2x+1)^{5}$$

Chain Rule with Quotient Rule

ex: find derivative of
$$g(t) = \left(\frac{t-2}{2t+1}\right)^9$$

$$= \frac{45 (t-2)^8}{(2t+1)^{10}}$$